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Production of monoclonal antibodies (MAb) for diagnostic or therapeutic applications has become
an important task in the pharmaceutical industry. The efficiency of high-density reactor systems
can be potentially increased by model-based design and control strategies. Therefore, a reliable
kinetic model for cell metabolism is required. A systematic procedure based on metabolic
modeling is used to model nutrient uptake and key product formation in a MAb bioprocess
during both the growth and post-growth phases. The approach combines the key advantages of
stoichiometric and kinetic models into a complete metabolic network while integrating the
regulation and control of cellular activity. This modeling procedure can be easily applied to any
cell line during both the cell growth and post-growth phases. Quadratic programming (QP) has
been identified as a suitable method to solve the underdetermined constrained problem related
to model parameter identification. The approach is illustrated for the case of murine hybridoma
cells cultivated in stirred spinners.

Introduction

Mammalian cell culture represents a major platform for the
production of a number of high-value biopharmaceuticals,
including enzymes, monoclonal antibodies (MAb), viral vac-
cines, hormones, and immuno-regulators. The products often
require highly specialized culture conditions and are susceptible
to either reduced productivity or significant cell death as a result
of slight changes in culture conditions. The systematic integra-
tion of cell physiology into a coherent, predictive model, which
can be used for simulation, optimization, and control, is expected
to contribute to increased productivity and product quality.

Since earlier modeling efforts (Frame and Hu, 1991a and
1991b; Portner and Shafer, 1996)), many animal cell models
have been developed. The common limitation of the available
models is that they have focused on characterizing only selected
aspects of the overall cell metabolism. Gombert and Nielsen
(2000) reviewed stoichiometry-based models versus dynamic
models based on empirical kinetics. The key advantage of the
stoichiometry-based models is that they account for competing
reactions, which is useful for describing the metabolic network
and for studying the relative activity of certain pathways under
various culture conditions. However, they are unable to incor-
porate regulation and control of cellular activity, which could
be achieved by dynamic models based on the reaction kinetics.
The authors concluded that dynamic models are not so
widespread in literature and are usually applied to the analysis
of relatively small aspects of the metabolism. Sidoli et al. (2004)
reviewed the developments in the modeling of mammalian cell
cultures in the past decade, with focus on two types of
mathematical models. To describe a population of cells consist-
ing of multiple populations with distributed properties within a
culture, population balance model (PBM) has been proposed.
However, PBMs have not been widely used because of two
major problematic features. First, they are complicated to solve

and to employ for optimization purposes. Second, accurate
determination of the model parameters is seriously limited due
to lack of proper measurements. Thus, the single cell model
(SCM) has been generally chosen over PBM models for
modeling these systems.

Due to exacting nutritional requirements and complex physi-
ology, it is particularly challenging to develop dynamic math-
ematical models for animal cell culture. It should be noted that
often the metabolites to be modeled by the macroscopic
equations are preselected (e.g., glucose or glutamine) and the
interactions between them are assigned arbitrarily. If all of the
interactions of the metabolites and cell physiology are included,
the dimension of the model may be too large for the purpose
of model-based optimization and control. Thus, to achieve model
simplification, macroscopic modeling of biological cell cultures
often involves an a priori selection of the elementary reaction
scheme. The main idea is to relate the major macroscopic
species, including biomass, essential substrates, and products
of interest, by a set of macro reactions. Once the reaction scheme
is selected, a systematic model reduction procedure is then
required to obtain a macroscopic reaction scheme. This data
reduction is essential to obtain a manageable set of equations
for optimization purposes. Finally, the reaction kinetics needs
to be determined, and the complete dynamic model is then
obtained based on the mass balance equations of the macro-
scopic species involved in the reaction scheme.

Dynamic mathematical models require, beyond the informa-
tion about the stoichiometry of the biological reaction system,
knowledge about the reaction kinetics. The identification of a
priori unknown reaction kinetics is often a critical task due to
the nonlinearity and over-parametrization of the model equations
needed to account for all the possible modulation phenomena.
Wouwer and Bogaerts (2005) proposed a general formulation
of reaction kinetics, as an extension of the Monod kinetics,
which allows limitation, activation, and inhibition to be
described with a reduced number of parameters. For illustrative
purposes, the reaction kinetics used in the current paper is
Monod kinetics. Previous dynamic models for hybridomas were
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limited to the exponential growth phase and steady-state
continuous culture only (Follstad et al., 1998; Bonarius et al.,
1995; Provost and Bastin, 2004; Haag et al., 2005). However,
for the purpose of process optimization, the modeling of both
the exponential and the post-exponential or declining growth
phase will be required. As an expansion to the previous
modeling efforts, an approach is proposed to develop a dynamic
model for both the exponential phase and the post-exponential
phase. Separate models were also obtained recently for different
phases of the culture, and a complete model is derived based
on the implementation of switching functions by Provost et al.
(2006).

To address the above problems, in the current paper, a
systematic procedure of developing a dynamic metabolic model
is used that is based on the combination of stoichiometric and
dynamic mass balances as follows. First, stoichiometric flux
balances based on a comprehensive metabolic network descrip-
tion are constructed. This is accomplished by using available
process knowledge in combination with experimental or pub-
lished metabolic information. Intracellular fluxes are calculated
using QP from the measured extracellular (transmembrane)
fluxes using the stoichiometry of the comprehensive metabolic
network. Second, the metabolic network is simplified by
systematic elimination of fluxes that are deemed insignificant
(smaller than a preset threshold). A set of macro-reactions are
identified that directly relate the extracellular metabolites to the
products. Finally, kinetic expressions based on Monod kinetics
are added to obtain a dynamic model, which includes the
regulation of the metabolite uptake or synthesis.

Materials and Methods

Murine hybridoma 130-8F was provided by Sanofi Pasteur
Ltd. (Toronto, Canada) and was propagated in D-MEM (Gibco
12100) with 2% FBS (JRH 12107-78P). The medium was
supplemented with proline (Sigma P-8449),L-asparagine (Sigma

A-4159), andL-aspartic acid (Sigma A-4534). Seed cultures
were subcultured on a 3-day regime. Seed and batch cultures
were grown in 250 mL and 500 mL spinners in a CO2 incubator
(Sanyo IR Sensor, 37°C, 8.0% CO2). Batch cultures were
maintained for at least 7 days with frequent sampling.

Viable cell concentration and total cell concentration were
determined by the trypan blue exclusion test using a hemo-
cytometer. Glucose, lactate, glutamine, and glutamate concentra-
tion was quantified using a YSI analyzer. Ammonia was
measured using a Sigma ammonia kit (Sigma 171-B). Total
Immunoglobulin titer (MAb concentration) was determined
using enzyme linked immunosorbent assay (ELISA) with
alkaline phosphatase conjugated goat anti-mouse IgG as the
primary reagent. The amino acids in deproteinated medium were
derivatized with OPA (o-phthaldehyde and 3-mercaptopropionic
acid in borate buffer) followed with FMOC (9-fluorenylmeth-
ylchloroformate in acetonitrile) and assayed using high perfor-
mance liquid chromatography (Hypersil AA-ODS column).

Results and Discussion

Metabolic Flux Analysis. Metabolic flux analysis (MFA)
refers to calculating unknown intracellular fluxes from measured
extracellular fluxes by applying the steady-state mass balance
equations. For each metabolite, a mass balance can be derived
in which both the transport rates over the cell membrane and
the intracellular reaction rates are included. This results in a
set of linear equations with a certain number of unknowns. The
resulting set of linear equations is usually underdetermined since
the number of unknown fluxes is larger than the number of
mass balances. To solve such an undetermined network, a
quadratic programming (QP) approach has been used in this
paper.

Based on published reports (Bonarius et al., 1995; Gambhir
et al., 2003; Follstad et al., 1998; Frame and Hu, 1991a and
1991b), the metabolic network shown in Figure 1 is constructed

Figure 1. Metabolic network for hybridoma cells.
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with the significant metabolic pathways in proliferating animal
cells. This network is used to calculate the flux distribution. In
the network, the number on the arrows refers to the correspond-
ing intracellular and transmembrane fluxes totalingn ) 32
fluxes. The corresponding set of the cellular reactions involved
in this network is summarized in Table 6. Reactions 31 and 32
for the biomass and murine MAb production are adapted from
the work of Gambhir and et al. (2003). The relative concentra-
tions of some medium components in the biomass were slightly
adjusted to correspond to the measured external fluxes. This
adjustment is to accommodate the requirements of the cell line
and needed to be done just once. The coefficients as shown in
Table 6 remain fixed during the current work.

The conversion rateR of a metaboliteM in a biological
system is given by the sum of the products of the stoichiometric
coefficients by the corresponding metabolic fluxes for all of
the respective reactions whereM is involved, as follows:

whereRi,M is the stoichiometric coefficient of metaboliteM in
reactioni, and ji is the intracellular flux through reactioni. A
negative value ofRi,M indicates that metaboliteM is consumed
in reaction i, whereas a positive value ofRi,M indicates that
metaboliteM is produced. Thus, eq 1 represents mass balance
for each metabolite. The entire set of mass balance equations
for the network is given in Table 1. This complete set of
equations is obtained based on the cellular reactions given in
Table 6. For example, for a metabolic network withm
metabolites andn unknown fluxes, the mass balance equations
in Table 1 can be expressed in the matrix form as follows:

whereA is the stoichiometric matrix obtained from the reactions
listed in Table 1,j is the vector of unknown fluxes, andR is

the vector of the uptake rates and production rates of all the
intracellular and the extracellular metabolites, which can be
calculated from experimental measurements as explained as
follows.

The mass balance equations for the culture can be written in
matrix form in the following manner:

where ψ is the vector of concentrations, based on culture
volume, of all of the intracellular metabolites (Ri, i ) 1, ..., 6)
and the extracellular metabolites (Ri, i ) 7, ..., 30),t is culture
time, andX is the viable cell concentration. The conversion rates
of the intracellular metabolitesRi, i ) 1, ..., 6 are set to zero
based on the assumption that under the balanced growth
condition, the internal metabolites are at a quasi-steady state.
To obtain the values ofR for the extracellular metabolites from
experimental data, eq 3 is integrated as follows:

whereCH is the cumulative volumetric cell-hours (Dutton et
al., 1998) defined as

As shown in eq 4, the instantaneous value ofR is the slope
relating the metabolite concentration to the cumulative volu-
metric cell-hours. The use of the cumulative volumetric cell-
hours concept allows for assessment of the productivity and
the biological capacity for production on the same cumulative
basis (Dutton et al., 1998). An average value of the cumulative

Table 1. Conversion Rates as Functions of Fluxes

Rexp Rpost-exp Rfull mass balances of metabolites as functions of fluxes

0 0 0 R1(PYR)) 2j1 - j2+j7 - j8 + j9 + j11 - j27 + j29 + j30
0 0 0 R2(AcCoA)) j2 - j3 + 2j13 + j16 + 3j18 + 2j19
0 0 0 R3(aKG)) j3 - j4 + j21 + j26 + j27 + j28
0 0 0 R4(SuCCoA)) j4 - j5 + j14 + j15 + j16 + j17
0 0 0 R5(FUM)) j5 - j6 + j13
0 0 0 R6(OAA)) -j3 + j6 - j7 - j28

-0.0716 -0.0046 -0.0341 R7(GLC)) -j1 - 0.0208j31
0.0553 -0.0024 0.0226 R8(LAC)) j8
0.1064 0 0.0458 R9(NH3) ) j9 + j10 + j11 + j13 + j14 + j15 + j16 + j17 + j18 + 2j19 + 2j20 + 2j21 +

j23 + j25 + j26 + j29 + j30
0.0309 0.0088 0.0191 R10(Ala)) j27 - j30 - 0.0133j31- 0.011j32

-0.0064 0 -0.0029 R11(Arg)) -j21 - 0.0027j31- 0.005j32
-0.0070 0.0002 -0.0034 R12(Asp)) j23 - j24 + j28 - 0.0261j31- 0.0082j32
-0.0045 -0.0037 -0.0032 R13(Asn)) -j23 + j24 - 0.0072j32
-0.0003 -0.0003 -0.0032 R14(Cys)) j29 - 0.0004j31- 0.005j32
-0.1012 -0.0072 -0.0508 R15(Gln)) -j24 - j25 - 0.0377j31- 0.0104j32

0.0011 0.0005 0.0004 R16(Glu)) j20 - j22 + j24 + j25 - j26 - j27 - j28 - 0.0006j31- 0.0107j32
-0.0133 0.0031 -0.0025 R17(Gly)) -2j10 - 0.0165j31- 0.0145j32
-0.0031 0 -0.0016 R18(His)) -j20 - 0.0033j31- 0.0035j32
-0.0078 -0.0034 -0.0048 R19(Ile)) -j16 - 0.0084j31- 0.005j32
-0.0110 -0.0031 -0.0060 R20(Leu)) -j18 - 0.0133j31- 0.0142j32
-0.0082 -0.0036 -0.0049 R21(Lys)) -j19 - 0.0101j31- 0.0145j32
-0.0032 0 -0.0016 R22(Met)) -j17 - 0.0033j31- 0.0028j32
-0.0036 -0.0001 -0.0018 R23(Phe)) -j12 - 0.0055j31- 0.0072j32

0.0035 0.0021 0.0048 R24(Pro)) j22 - 0.0081j31- 0.0148j32
-0.0044 -0.0003 -0.0032 R25(Ser)) j10 - j11 - 0.0099j31- 0.0267j32
-0.0072 -0.0007 -0.0033 R26(Thr)) -j9 - j15 - 0.008j31- 0.0267j32
-0.0036 -0.0002 -0.0019 R27(Tyr)) j12 - j13 - 0.004j31- 0.0085j32
-0.0092 -0.0021 -0.0049 R28(Val)) -j14 - 0.0096j31- 0.0189j32

0.6574 0.1294 0.3161 R29(BioMass)) j31
4.7425× 10-6 8.0402× 10-6 5.9958× 10-6 R30(MAb) ) j32 (MW ) 1.5× 105 g/mol)

R(M) ) ∑
i

Ri,Mji (1)

R ) Aj (2)

dψ(t)
dt

) RX(t) (3)

dψ(t)
dt ) RX(t)98

∫∫0

t
dψ(t) ) R∫0

t
X(t) dt

w ψt - ψ0 ) R(CHt - CH0) (4)

CH ) ∫0

t
X dt (5)
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volumetric cell-hours was calculated by using the logarithmic
mean cell density between data points as follows:

For the cell line under study, the calculated values ofR by
eq 6 are given in Table 1. Different average values ofR were
calculated from eq 6 according to the different phase of the
batch as follows,R exp for the exponential phase,Rpost-exp for
the post-exponential phase, andRfull for the entire batch.

Finally, the fluxesj can be calculated from the reaction rates
R by using the matrix equation (eq 2). In the present case this
equation is slightly underdetermined since there are more
unknown intracellular fluxes than available measurements of
extracellular fluxes, i.e.m < n. In addition, the reactions, as
written, are irreversible, and this fact imposes that the fluxes
will be either positive or zero, i.e.,j g 0. An optimization
approach employing quadratic programming has been used in
this work to solve the problem where the underdetermined
system of equations defined by eq 2 together with the corre-
sponding constraints of the fluxes can be formulated as follows:

The chosen cost function in eq 7, i.e. the sum of squared errors,
is justified by the fact that the solution will try to extract fluxes
from noisy measured reaction rates. Also, although the system
under consideration is slightly undetermined, which can lead
to infinite possible solutions, if the number of active constraints
is larger than the indeterminacy of the system, then the solution
to the problem posed in eq 7 is unique. The indeterminacy is
determined by subtracting the number of equations from the
number of unknowns, e.g., for the current case the indeterminacy
is 32 unknowns- 30 equations) 2. Thus, if the number of
active constraints is larger than 4, the solution to the QP is
unique. Using the average values ofRexp for the exponential
phase,Rpost-exp for the post-exponential phase, andRfull for the
full batch given in Table 1, the corresponding intracellular fluxes
obtained from the quadratic programming solution of eq 7 are
given in Table 2.

It appears from Table 2 that the fluxes during the exponential
phase,jexp, are proportionally larger than either the average
fluxes for the entire batch,j full , or the mean fluxes during the
post-exponential phase,jpost-exp. This indicates that during the
exponential phase, the cell division requires much more energy
than during the post-exponential phase. The fluxes that are below
0.4% of the sum of the fluxes in each phase correspond to the
pathways that are insignificant regarding energy generation in
the metabolic network, and they are only involved in biomass
and MAb formation. Of the original 32 fluxes it is found that
fluxes ji, i ) 9-21, 26, 29, 32, are non-significant during the
exponential phase; fluxesji, i ) 8-22, 26, 28-30, 32 are not
significant during the post-exponential phase; and fluxesji, i )
9-21, 26, 29, 30, 32 are non-significant during the entire culture.
However, flux j32 is the flux for MAb production, so it is
important and cannot be neglected even if it is relatively smaller
than the other fluxes. In conclusion, fluxesji, i ) 9-21, 26,
29, 30 are the non-significant fluxes and were eliminated. The
sum of the neglected fluxes amounted to approximately 1% of
the total. The simplified metabolic network with the remaining
significant fluxes is given in Figure 2, where the number on
the arrows represents the original flux number.

Regarding flux 26, an interesting finding of the metabolic
flux analysis was that the dominant means of glutamate (Glu)
catabolism toR-ketoglutarate (aKG) involved transamination
with pyruvate as the cosubstrate rather than deamination. This
explained the significant accumulation of alanine (Ala) from
pyruvate and the relatively low level of ammonia formation
during the growth phase.

To assess the sensitivity of the flux values to noise in the
reaction rates, the vector of measuredR values was augmented
with additional 30 values consisting of the measured values
(10% of the measured values to represent noise. Following
this, the QP is formulated to solve the 60 resulting equations,
corresponding to the selected 60R values, with 32 unknown
fluxes. This over-determined system of equations was solved
with a QP solution. The conclusion from this calculation is that
the dominant fluxes were exactly the same as the ones calculated
using the original vector of 30 rates alone presented in the
manuscript. To describe the sensitivity of the results to noise,
flux fractions () flux/sum of fluxes) were calculated and plotted
in Figure 3 for the QP using 30R values and 60R values
respectively. The figure shows that the differences between these
two QP solutions are minimal in terms of the flux fractions

Macroscopic Reaction Scheme.Significant progress has
been achieved toward systematic selection of the reaction
scheme. Hulhoven et al. (2005) addressed this modeling problem
and aimed at the development of a method for systematically
evaluating all potential reaction schemes that contain identifiable
parameters. Nernard and Bastin (2005) have also summarized
the approach of identifying a reaction network, and the authors
have applied the approach to a few case studies (Nernard and
Bastin, 2005; Provost and Bastin, 2004). They claimed that the
results of the procedure may not be unique and a careful
examination for complex metabolic networks is necessary.

The reaction scheme given in Figure 2 represents a network
that is the combination of the elementary flux modes, also called

Table 2. Fluxes j (µmol/(106 cells‚h))

jn jexp jpost-exp j full

j1 0.0580 0.0022 0.0276
j2 0.0846 0.0047 0.0385
j3 0.0939 0.0047 0.0441
j4 0.1585 0.0110 0.0723
j5 0.1646 0.0111 0.0750
j6 0.1652 0.0111 0.0751
j7 0.0639 0.0065 0.0273
j8 0.0553 0 0.0225
j9 0 0 0
j10 0.0013 0 0
j11 0 0 0
j12 0 0 0
j13 0.0006 0 0
j14 0.0024 0 0.0012
j15 0.0014 0 0.0001
j16 0.0017 0 0.0015
j17 0.0005 0 0.0000
j18 0.0019 0 0.0011
j19 0.0004 0 0.0003
j20 0 0 0
j21 0.0007 0 0
j22 0.0094 0 0.0081
j23 0.0613 0.0026 0.0155
j24 0.0579 0.0010 0.0137
j25 0.0174 0.0015 0.0238
j26 0.0057 0 0.0002
j27 0.0507 0.0062 0.0242
j28 0.0074 0 0.0038
j29 0.0001 0 0.0024
j30 0.0105 0 0.0002
j31 0.6575 0.1292 0.3162
j32 0.0001 1.4527× 10-13 0.0001

CH ) ∑
0

t { Xt+∆t - Xt

ln(Xt+∆t/Xt)
× (tt+∆t - tt)} (6)

Min{(Aj - R)T(Aj - R)} s.t. j g 0 (7)
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the spanning pathways (Provost and Bastin, 2004). Elementary
flux modes are the simplest metabolic paths that are able to
connect the substrates to the products, i.e., measurable inputs
to outputs. In general, the procedure to determine the elementary
flux modes is to minimize the number of unmeasured metabolic
variables by appropriate combination of the stoichiometric
equations. An efficient automatic C-program Metatool has been
used to accomplish this by Provost and Bastin (2004). When

the number of fluxes is relatively small, however, judicious
combination of equations representing metabolic sequences can
be applied to accomplish the same. For the simplified metabolic
network shown in Figure 2, the 17 significant metabolic fluxes
were combined to give the nine elementary flux modes
manually, as summarized in Table 3.

For the purpose of dynamic modeling of extracellular
metabolites, the intracellular metabolites are eliminated from

Figure 2. Reduced metabolic network for 130-8F hybridoma cells.

Figure 3. Flux values calculated with the original 30 experimental values (solid line) and with a combination of experimental and perturbed
reaction rates values (dash line).
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each elementary mode to generate a macro-reaction. For
example, for the first elementary mode (e1), the final macro
reaction is obtained by adding up reaction j1 and j8 (multiplied
by 2 for the elimination of PYR). A total of nine fundamental
macro-reactions connecting the extracellular substrates and
products are summarized in Table 4.

Reaction Kinetics and Dynamic Model.The dynamic model
to describe the mass balances of the extracellular species is given
by the following equation:

ê(t) ) (ê1 ‚‚‚ êp)T is the vector of the extracellular species
concentrations;r (t) ) (r1 ‚‚‚ rq)T is the vector of the macro-
reaction rates;K is the stoichiometric matrix of the macro-
reaction network; andu(t) is the input vector representing the
net exchange of the species with the surroundings. The term
ui(t) is zero for all species except for CO2, i.e., the CO2 gaseous
flow rate. However, it should be noted that in this paper CO2

measurements are not available and CO2 is not predicted by
the model.

The significant metabolites for the hybridoma cell line under
study were identified to be the 11 extracellular metabolites
involved in the reduced network given in Figure 2, and they

were put in the following vectorê(t):

where the single letter in the bracket after each metabolite is a
symbol used to represent that metabolite for simplicity, e.g., U
for glutamate.

Table 3. Elementary Flux Modes

E1 J1 GLCf 2PYR
J8 PYRf LAC
total GLCf 2LAC

E2 J1 GLCf 2PYR
J27 PYR+ GLU f Ala + aKG
J4 aKGf SuCCoA+ CO2

J5 SuCCoAf FUM
J6 FUMf OAA
J7 OAA f PYR
J8 PYRf LAC
total GLC+ 2GLUf 2Ala + 2CO2 + 2LAC

E3 J1 GLCf 2PYR
J2 PYRf AcCoA + CO2

J3 AcCoA+ OAA f aKG + CO2

J4 aKGf SuCCoA+ CO2

J5 SuCCoAf FUM
J6 FUMf OAA
J28 GLU+ OAA f ASP+ aKG
J4 aKGf SuCCoA+ CO2

J5 SuCCoAf FUM
J6 FUMf OAA
J7 OAA f PYR
J8 PYRf LAC
total GLC+ 2GLU f 2Asp+ 2LAC + 6CO2

E4 J22 GLUf PRO
total GLU f PRO

E5 J23 ASNf ASP+ NH3

total ASNf ASP+ NH3

E6 J24 GLN+ ASPf ASN + GLU
total GLN + ASPf ASN + GLU

E7 J31 0.0208GLC+ 0.0377GLN+ 0.0133ALA+ 0.007ARG+
0.0ASN+ 0.026lASP+ 0.0004CYS+ 0.0006GLU+
0.0165GLY+ 0.0033HIS+0.0084ILE+ 0.0133LEU+
0.010lLYS+ 0.0033MET+ 0.0055PHE+ 0.0081PRO+
0.0099SER+ 0.008THR+ 0.004TYR+
0.0096VALf BioMass

total same as above
E8 J32 0.0104GLN+ 0.01lALA + 0.005ARG+ 0.0072ASN+

0.0082ASP+ 0.005CYS+ 0.0107GLU+ 0.0145GLY+
0.0035HIS+ 0.005ILE+ 0.0142LEU+ 0.0145LYS+
0.0028MET+ 0.0072PHE+ 0.0148PRO+0.0267SER+
0.0160THR+ 0.0085TYR+ 0.0189VALf MAb

total same as above
E9 J25 GLNf GLU + NH3

Total GLN f GLU + NH3

dê(t)
dt

) Kr (t) + u(t) (8)

Table 4. Fundamental Macro-Reactions

E1 GLCf 2LAC
E2 GLC+ 2GLU f 2Ala + 2CO2 + 2LAC
E3 GLC+ 2GLU f 2Asp+ 2LAC + 6CO2

E4 GLU f PRO
E5 ASNf ASP+ NH3

E6 GLN + ASPf ASN + GLU
E7 0.0508GLC+ 0.0577GLN+ 0.0133ALA+ 0.007ARG+

0.006ASN+ 0.020lASP+ 0.0004CYS+ 0.0016GLU+
0.0165GLY+ 0.0033HIS+ 0.0084ILE+ 0.0133LEU+
0.010lLYS+ 0.0033MET+ 0.0055PHE+ 0.0081PRO+
0.0099SER+ 0.008THR+ 0.004TYR+ 0.0096VALf BioMass

E8 0.0104GLN+ 0.01lALA + 0.005ARG+ 0.0072ASN+
0.0082ASP+ 0.005CYS+ 0.0107GLU+ 0.0145GLY+
0.0035HIS+ 0.005ILE+ 0.0142LEU+ 0.0145LYS+
0.0028MET+ 0.0072PHE+ 0.0148PRO+ 0.0267SER+
0.0160THR+ 0.0085TYR+ 0.0189VALf MAb

E9 GLN f GLU + NH3

ê ) (GLC(G), GLN(Q), LAC(L), GLU(U), ASN(S),

ASP(F), ALA, PRO, BioMass, MAb)T (9)
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The stoichiometric matrixK is computed directly from Table
4 in combination with the general equation 8 as follows:

It is assumed that the reaction ratesri(t) of the macro-reactions
satisfy simple Monod-type kinetics. The rate expressions with
the corresponding kinetic parameters are summarized in Table
5. The explicit mass balances for the elements ofê are

Parametersai are the maximum specific reaction rates and
are very important parameters of the model, andkGi, kQi, kUi,
kSi, kFi are the half-saturation constants. AAA in reactions 7

Table 5. Reaction Rates of Macro-Reactions

no. reaction rate expression parameters

E1 GLC(G)f 2LAC
ri ) ai

GX
kGi + G

, i ) 1
a1, kG1

E2 GLC(G)+ 2GLU(U) f 2Ala + 2CO2 + 2LAC
ri ) ai

GUX
(kGi + G)(kUi + U)

, i ) 2, 3
a2, kG2, kU2

E3 GLC(G)+ 2GLU(U) f 2Asp+ 2LAC + 6CO2 a3, kG3, kU3

E4 GLU(U) f PRO
ri ) ai

UX
(kUi + U)

, i ) 4
a4, kU4

E5 ASN(S)f ASP+ NH3 ri ) ai
SX

kSi + S
, i ) 5

a5, kS5

E6 GLN(Q)+ ASP(F)f ASN + GLU
ri ) ai

QFX
(kQi + Q)(kFi + F)

, i ) 6
a6, kQ6, kF6

E7 GLC(G)+ AAA f BioMass
ri ) ai

Q
kQi + Q

X, i ) 7
a7

E8 AAA f MAb
ri ) ai

Q
kQi + Q

X, i ) 8
a8

E9 GLN(Q)f GLU + NH3 ri ) ai
QX

kQi + Q
, i ) 9

a9, kQ9

K )

[ r1 r2 r3 r4 r5 r6 r7 r8 r9
GLC -1 -1 -1 0 0 0 -0.0508 0 0
GLN 0 0 0 0 0 -1 -0.0577 -0.0104 -1
LAC 2 2 2 0 0 0 0 0 0
NH3 0 0 0 0 1 0 0 0 1
GLU 0 -2 -2 -1 0 1 -0.0016 -0.0107 1
ASN 0 0 0 0 -1 1 -0.006 -0.0072 0
ASP 0 0 2 0 1 -1 -0.0201 -0.0082 0
ALA 0 2 0 0 0 0 -0.0133 -0.011 0
PRO 0 0 0 1 0 0 -0.0081 -0.0148 0
CO2 0 2 6 0 0 0 0 0 0
BioMass 0 0 0 0 0 0 1 0 0
MAb 0 0 0 0 0 0 0 1 0

]
p×q

(10)

dGLC(t)
dt

) -a1
GX

kG1 + G
- a2

GUX
(kG2 + G)(kU2 + U)

-

a3
GUX

(kG3 + G)(kU3 + U)
- 0.0508a7

Q
kQ7 + Q

X

dGLN(t)
dt

) - a6
QFX

(kQ6 + Q)(kF6 + F)
- 0.0577a7

Q
kQ7+ Q

X -

0.0104a8
Q

kQ8 + Q
X - a9

QX
kQ9 + Q

dLAC(t)
dt

) 2a1
GX

kG1 + G
+ 2a2

GUX
(kG2 + G)(kU2 + U)

+

2a3
GUX

(kG3 + G)(kU3 + U)

dNH3(t)

dt
) a5

SX
kS5 + S

+ a9
QX

kQ9 + Q

dGLU(t)
dt

) -2a2
GUX

(kG2 + G)(kU2 + U)
-

2a3
GUX

(kG3 + G)(kU3 + U)
- a4

UX
kU4 + U

+

a6
QFX

(kQ6 + Q)(kF6 + F)
- 0.0016a7

Q
kQ7 + Q

X -

0.0107a8
Q

kQ8 + Q
X + a9

QX
kQ9 + Q

dASN(t)
dt

) -a5
SX

kS5 + S
+ a6

QFX
(kQ6 + Q)(kF6 + F)

-

0.006a7
Q

kQ7 + Q
X - 0.0072a8

Q
kQ8 + Q

X

dASP(t)
dt

) 2a3
GUX

(kG3 + G)(kU36 + U)
+ a5

SX
kS5 + S

-

a6
QFX

(kQ6 + Q)(kF6 + F)
- 0.0201a7

Q
kQ7 + Q

X -

0.0082a8
Q

kQ8 + Q
X

dALA(t)
dt

) 2a2
GUX

(kG2 + G)(kU2 + U)
- 0.0133a7

Q
kQ7 + Q

X -

0.011a8
Q

kQ8 + Q
X

dPRO(t)
dt

) a4
UX

kU4 + U
- 0.0081a7

Q
kQ7 + Q

X -

0.0148a8
Q

kQ8 + Q
X

dBioMass(t)
dt

) a7
Q

kQ7 + Q
X

dMAb(t)
dt

) a8
Q

kQ8 + Q
X (11)
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and 8 represents all the amino acids; the corresponding reactions
are written in their complete form in Table 4.

The model parametersai andkGi, kQi, kUi, kSi, kFi given in eq
8 need to be determined before the model can be applied for
prediction. The number of equations given in expression 11 is
13, whereas there are 19 parameters to be determined. This
underdetermined problem has no unique solution unless more
constraints are defined, and it may not be necessary to identify
all 19 parameters from experimental data. The maximum
specific reaction ratesai depend on the experiment conditions
and must be identified from experimental data of the metabolites
and biomass, whereas the half-saturation constants can be
determined using the balanced-growth assumption.

The main purpose of the model is to predict the key
metabolite consumption as well as synthesis of viable cells.
Under balanced growth conditions, the macro-reactions can be
assumed to proceed at their maximum rates. The half-saturation
constantskGi, kQi, kUi, kSi, kFi are therefore selected to be
sufficiently small compared to the metabolite concentration, as
shown in eq 12. During the growth phase when the metabolite
concentrations far exceed the value of the half-saturation
constant, the reaction rater becomes essentially equal to the
maximum specific reaction rate,a. For example, the first
reaction in Table 5,ri ) aiGX/(kGi + G), i ) 1becomesri )
aiX, i ) 1 whenri ) . kGi, i ) 1. Only during the death phase
when the metabolite concentrations are very small and compa-
rable to the half-saturation constant, the reaction rater needs
to be determined explicitly by considering the half-saturation
constants. The half-saturation constants are kept in a range that

provides maximum rates during the exponential phase but avoids
numerical stiffness to prevent computational problems during
modeling. It should be noted that because the small half-
saturation constants for the post-exponential phase are assumed
to be the same as for the exponential phase, the reactions are
assumed to be of zero order for the post-exponential phase as
well. The half-saturation constantskGi, kQi, kUi, kSi, kFi are chosen
to be

As a result, the following is true:

Using the assumed small values in eq 12, then

Then, the dynamic model from eq 8 can be rewritten as

The mass balance equations for the metabolites in the vectorê
can be written as follows:

whereRê is the vector of the uptake and production rates of
the extracellular metabolitesê. Comparing eqs 15 and 16, the
parametersa can be identified as non-negative solution of the
linear relationship between the measured specific uptake and
excretion ratesRê and the maximum macro-reactions ratesai,
given by

As illustrated in the section of the metabolic flux analysis,
the uptake and production ratesRê of the extracellular metabo-
lites ê can be calculated from the linear regression of the
metabolite concentrations and cumulative volumetric cell-hours
using eq 4.Rê consists only of a part of the vectorR, with
only the elements corresponding to the metabolites in the vector
ê defined by eq 9. If some measurements of metabolites in the
vector ê are not available from the experiments, then the
corresponding rows of the matrixK , defined by eq 10, can be
taken out of this matrix. Thus, the missing data will not affect
the identification of the maximum reaction ratesai. For example,
if NH3 data are not available, the fourth row is eliminated from
the matrixK .

The results in Table 1 show that the cell-specific uptake/
excretion rates are significantly different during the exponential
(R exp) and the post-exponential phase (Rpost-exp). Consequently,
the vectorsRê,exp andRê,post-exp will be also different. Conse-
quently, different model parametersaexp andapost are used for
the exponential and for the post-exponential phase respectively.
These parameters are identified by applying the QP approach
based on the following relationships that result from eq 17:

Table 6. Stoichiometric Equations

jn reaction

j1 GLC f 2PYR+ 2NADH + 2ATP
j2 PYR f AcCoA + CO2 + NADH
j3 AcCoA + OAA f aKG + NADH + CO2

j4 aKG f SuCCoA+ NADH + CO2

j5 SuCCoAf FUM + NADH
j6 FUM f OAA + NADH
j7 OAA f PYR + NADPH + CO2

j8 PYR + NADH f LAC
j9 THR f PYR + CO2 + NH3 + 2NADH
j10 2GLY f SER+ CO2 + NH3 + NADH
j11 SERf PYR + NH3

j12 PHEf TYR + NADH
j13 TYR f FUM + 2AcCoA + NH3 + CO2 + NADPH
j14 VAL f SuCCoA+ CO2 + NH3 + NADPH
j15 THR f SuCCoA+ NH3

j16 ILE f SuCCoA+ AcCoA + NADPH + NH3

j17 MET + O2 f SuCCoA+ SO2 + NADPH + NH3

j18 LEU f NH3 + 3AcCoA + NADPH
j19 LYS f 2AcCoA + 2CO2 + 2NADPH + 2NH3

j20 HIS f GLU + 2NH3 + CO2

j21 ARG f aKG + 2NH3 + urea+ 3NADH
j22 GLU + ATP + 2NADPH f PRO
j23 ASN f ASP+ ATP + NH3

j24 GLN + ASP+ 2ATP f ASN + GLU
j25 GLN f GLU + ATP + NH3

j26 GLU f AKG + NADPH + NH3

j27 PYR+ GLU f ALA + AKG
j28 GLU + OAA f ASP+ AKG
j29 CYS+ O2 f PYR + SO2 + NADH + NH3

j30 ALA f PYR + NADH + NH3

j31 0.0508GLC+ 0.0577GLN+ 0.0133ALA+ 0.007ARG+
0.006ASN+ 0.020lASP+ 0.0004CYS+ 0.0016GLU+
0.0165GLY+ 0.0033HIS+ 0.0084ILE+ 0.0133LEU+
0.010lLYS+ 0.0033MET+ 0.0055PHE+ 0.0081PRO+
0.0099SER+ 0.008THR+ 0.004TYR+ 0.0096VALf BioMass

j32 0.0104GLN+ 0.01lALA + 0.005ARG+ 0.0072ASN+
0.0082ASP+ 0.005CYS+ 0.0107GLU+ 0.0145GLY+
0.0035HIS+ 0.005ILE+ 0.0142LEU+ 0.0145LYS+
0.0028MET+ 0.0072PHE+ 0.0148PRO+ 0.0267SER+
0.0160THR+ 0.0085TYR+ 0.0189VALf MAb

kGi ) kQi ) 0.01 (mmol/L)

kUi ) kSi ) kFi ) 0.0001 (mmol/L) (12)

G . kGi,Q . kQi,U . kUi,S. kSi,F . kFi (13)

ri(t) = aiX(t), r (t) = aX(t) (14)

dê(t)
dt

) Kr (t)98
r (t) ) aX(t) dê(t)

dt
) KaX(t) (15)

dê(t)
dt

) RêX(t) (16)

Rê ) Ka (17)

Rê,exp ) Ka exp (18)

Rê,post-exp ) Kapost-exp (19)

H



Thus, combining eqs 16 and 17, the metabolite mass balance
dynamic model can be written as

During the exponential phase, as the number of viable cells
increases, a certain amount of nutrients are required for growth,
as well as maintenance and metabolite production (Portner and
Schafer, 1996). Hence, during the exponential phase, the uptake
rates of substrates and the production rates of the metabolites
should depend on both the viable cell concentrationX(t) and
the specific growth rate of the viable cells, dX(t)/dt ) µX(t).
On the other hand, during the post-exponential phase cell growth
slows down significantly or ceases and much less nutrients are
required for growth and the majority of nutrient requirement is
for the maintenance and production. Consequently, during the
post-exponential phase, the specific uptake/production rates
should depend only on the viable cell concentration,X(t).

Following these arguments it was assumed that

wheream andag are obtained from eqs 18 and 19 in combination
with definitions 22 and 23. Thusam is obtained from the QP
solution of the following problem:

and usingam obtained from eqs 24 and 22, the solution forag

is derived from

Then, the dynamic model can be rewritten as

It should be noted that the same values of the coefficientsam,
used to describe the maintenance, are used for the exponential
and post-exponential phase.

To complete the mathematical model, it is necessary to predict
the viable cell concentrations of the culture, because the
metabolite mass balances depend on the amount of the viable
cells based on the model structure given in eq 16. Typical
growth and post-exponential decline of viable cells in batch
culture is shown in Figure 4. After reaching a maximum value,
the overall viable cell concentration begins to decline as the
culture enters the post-exponential (apoptotic) phase. It is
desirable to have a model that is able to predict the onset of
cell population decline. With this objective in mind the following
model was proposed:

for the growth phase

and for the post-exponential phase

where Xd is the dead cell concentration, andko is a model
parameter identified from the experimental data using the
nonviable cell equation given in eq 27.

Figure 4. Viable cell and glutamine concentration in batch culture.

dê(t)
dt

) KaexpX(t) ) Kr exp for exponential phase (20)

dê(t)
dt

) Kapost-expX(t) )

Kr post-exp for post-exponential phase (21)

aexp ) am + agµ (22)

apost-exp ) am (23)

Rê,post- exp ) Kam (24)

Rê,exp - Kam

µ
) Kag (25)

dê(t)
dt

) KaexpX(t) ) K (am + agµ)X(t) for exponential phase
(26)

dê(t)
dt

) Kapost-expX(t) )

KamX(t) for post-exponential phase

dX
dt

) µX - (koXd)X

dXd

dt
) koXXd (27)

dX
dt

) - (koXd)X

dXd

dt
) koXXd (28)
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The model of viable cell concentration given in eqs 27 and
(28) includes a cell growth inhibition termkoXd. The rationale
behind this term is that cell death is related to some toxin or
inhibitor concentration that is proportional to the concentration
of nonviable cells. Since this term enters the equations with a
negative sign and since the non-viable cell concentration is
continuously increasing, it correctly models the experimental

observation that cell proliferation cannot be re-established by
feeding of fresh nutrients once the cells in a culture are
committed to apoptosis. A more detailed model of the onset
and evolution of cell apoptosis and necrosis is beyond the scope
of the current study. The current proposed model was deemed
sufficiently accurate for the purpose of fitting the experimental
data as shown in the following section.

Figure 5. Comparison of model calibration prediction using average rates (-) versus the data used for model calibration (O, 0, /).

Figure 6. Comparison of model calibration prediction using average rates (-) versus the data used for model calibration (O, 0, /).
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In summary, based on eq 26 the dynamic model with a total
of 13 differential equations is given by the following equations:

Model Calibration and Testing. Six independent batch
experiments were performed, and the data collected in these
experiments were used for calibration and testing of the
mathematical model. In four of these experiments the concentra-
tions of viable cells, total number of cells and amino acids,
glucose, lactate, and MAb were determined. In the remaining
two experiments only viable cells, glucose, non-viable cells,
and lactate concentrations data were collected.

The data were split in two sets of three batches each. The
first set of three batches was used for calibration of the model,
whereas the second set was used for testing of the accuracy of
the mathematical model. One set of metabolite uptake and
production rate values are calculated and given by the vector
Rê as described in eq 30. The calculation of these values was
based on the QP solution of eqs 18 and 19. It should be noted
that for the three batches used for calibration the measured
growth rates represent a certain amount of variability, i.e.,
0.0405, 0.0379, and 0.0413 h-1, respectively. Therefore, to
perform the calculations, averaged values of the growth rate
and the consumption ratesRê were calculated in order to
perform the regression using the QP algorithm, and the values
were as follows:

Using these average values of rates, the model parameters
calculated from the QP algorithm were as follows:

The data collected for the three batches used for calibration
(denoted by symbols), together with the model prediction
(denoted by solid line), obtained with the averaged reaction rates
values, are shown in Figures 5 and 6. Employing the identified
parameters, the accuracy of the model was tested by comparing
the model predictions with data from the three batches that were
not previously used for model calibration.

Using only the knowledge of the measured growth rates ,the
model based on the parameters given in eq 31 is used to predict
nutrient and metabolic product concentrations. Concentrations
of different variables as a function of time for two of the batches
used for testing of the models are plotted in Figures 7 and 8 for
the first and Figure 9 for a second batch, respectively. For the
testing data certain variability in growth rates was obtained

Figure 7. Comparison of model predictions (-) versus batch 1 of the testing data (O) (growth rateµ1 ) 0.042 h-1).

dê(t)
dt

) KaexpX(t) or
dê(t)

dt
) Kapost-expX(t) (29)

dX
dt

) µX - koXXd(exp) or
dX
dt

) -koXXd(post-exp)

dXd

dt
) koXXd

ê ) (GLC(G), GLN(Q), LAC(L), GLU(U), ASN(S),

ASP(F), ALA, PRO, BioMass, MAb)T

Rê,exp ) [-0.0739-0.0987 0.0530 0.0107-0.0044-

0.0068 0.0301 0.0034 0.6424 0.0046]T

Rê,post) [-0.0054-0.0172 0.0016-0.0002-0.0026-

0.0009 0.0112 0.0056 0.0573 0.0077]T (30)

µ ) 0.0399,ko ) 0.06 (31)

aexp ) [0.0080 0.0191 0.0023 0.0081-0.0100-
0.0110 0.6429 0.0046 0.0731]

apost) [-0.0033 0.0058-
0.0014 0.0057 0.0056 0.0029 0.0573 0.0077 0.0113]

am ) apost

ag ) [0.2840 0.3325 0.0923 0.0596-0.7253-
0.6839 14.6764-0.0780 1.8851]
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between the batches. The two batches shown in this paper
correspond to the ones with the highest and lowest growth rates,
i.e., µ1 ) 0.042 h-1 in Figures 7 and 8 andµ2 ) 0.0356 h-1 in
Figure 9, respectively. From an operational point of view, it is
convenient and useful to express the substrate and product fluxes
as the function of the specific growth rate,µ. In contrast to
amino acid and product (MAb) assay, the specific growth rate
can be rapidly determined with minimal time delay during cell

culture. The prediction of amino acid use, in turn, allows an
“on-line” application of the model in an industrial setting.

As shown in these figures, generally the model predictions
(denoted by solid lines) are in good agreement with the
experimental data for both batches (denoted by circles). For the
batch in Figure 9 the amino acid concentrations are not available
and therefore only viable cells, glucose, lactate, and dead cell
concentrations are plotted.

Figure 8. Comparison of model predictions (-) versus batch 1 of the testing data (O) (growth rateµ1 ) 0.042 h-1)

Figure 9. Comparison of model predictions (-) versus batch 2 of the testing data (O) (growth rateµ2 ) 0.0356 h-1).
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Although the experimental conditions between the batches
were very similar, the variability in the growth rates is
accompanied by similar variability in metabolite concentrations
and viability. Thus, an additional test of model accuracy is that
differences in cell growth rate give rise to corresponding
different metabolite concentrations in the different batches. By
comparing Figures 9 and 7, it can be observed that the batch
with the lowest growth rate shown in Figure 9 results as
expected in a lower production of lactate and slower consump-
tion of glucose as compared to the faster changes in these
variables recorded during the batch with the higher growth rate
shown in Figure 7. This implies that a higher rate of glycolysis
provides additional energy to bring about higher cell-specific
growth rate. Lactic acid is a well-known inhibitory metabolite
of mammalian cells. Apparently, the maximum lactate concen-
trations of less than 2 mM had no adverse effect on the specific
growth rate.

A peculiar feature of this cell line is the absolute requirement
for aspartic acid (Asp) during the growth phase. The mathemati-
cal analysis of the amino acid fluxes confirmed this requirement.
Aspartic acid is exhausted following glutamine exhaustion. It
is unclear, however, whether aspartic acid serves as a partial
replacement of glutamine for energy metabolism and if the
exhaustion of either or both of these amino acids brings about
the onset of cell death.

Conclusions

A modeling procedure that takes into account cell metabolism
has been used for the prediction of nutrient and product
concentrations. The major contribution of the work is that it
links cell metabolism to the dynamic mass balances for
extracellular metabolites. Staring with a complex metabolic
network, significant intracellular fluxes were first identified
using MFA. However, because of its large dimensionality, the
model based on this MFA results was still too impractical for
model-based control and optimization. Therefore, a model
reduction step followed and kinetics was added to the stoichio-
metric model so that a dynamic model was obtained that was
well-suited for the model-based applications. Only a few basic
experiments, for example, batch studies, were required for the
identification of the model.

The results have shown that this model provides good
prediction of the cell culture during both the exponential phase
and the post-exponential phase, where the effects of cell
production and cell death are expressed as functions of key
nutrients.

The key benefits of the proposed model are as follows:
(1) The model predicts the concentrations of the major energy

sources: glucose and glutamine.
(2) The model predicts the concentrations of the key amino

acids during the cell culture process. These amino acids are the
ones that are used for energy generation besides protein
synthesis. Thus, the model may be used as a soft sensor to
estimate the amino acids concentrations and may be used to
control the addition of key nutrients during fed-batch culture.

(3) The model predicts product formation, and this may be
used in the future as part of the overall optimization strategy.

The major novelty of this paper is that it proposes a model
identification method, which is generic and can be easily applied
to obtain a dynamic model for other cells lines. It could also be
applied to identify significant nutrients and to study the effect
of specific intracellular fluxes on cell growth and cell death.
The only input parameter to the model is specific growth rate,
µ. Consequently, online adaptation based on on-line estimation

of the growth rate could be considered for cases when the growth
rate is time-varying.

Notation
aexp max specific reaction rate, exponential phase,µmol/

(106 cells‚h)
ai max specific reaction rate,µmol/(106 cells‚h)
ag max specific reaction rate, growth,µmol/(106 cells‚h)
am max specific reaction rate, maintenance,µmol/(106 cells‚

h)
apost-exp max specific reaction rate, post-exponential phase,

µmol/(106 cells‚h)
A matrix of stoichiometric coefficients
CH volumetric cell-hour, 106 cells‚h
j i intracellular flux i, µmol/(106 cells‚h)
kd specific growth rate during the post-exponential phase,

h-1

ko nonviable cell inhibition parameter, (106 cells/mL‚h)-1

kPi, kQi,
kSi, kUi

half-saturation constant, mmol/L

ri Monod kinetics reaction rate,µmol/(106 cells‚h)
Ri specific conversion rate for metabolitei, µmol/(106

cells‚h)
R vector of specific conversion rate for all metabolites,

µmol/(106 cells‚h)
Rê,exp metabolite conversion rates, exponential phase,µmol/

(106 cells‚h)
Rê,g metabolite conversion rates, growth,µmol/(106 cells‚

h)
Rê,m metabolite conversion rates, maintenance,µmol/(106

cells‚h)
Rê,post-exp metabolite conversion rates, post-exponential phase,

µmol/(106 cells‚h)
t culture time, h
X viable cell concn, 106 cells/mL
ê(t) metabolite concn, mmol/L
µ specific growth rate, exponential phase, h-1

ψ vector of concn, based on culture volume, of all
metabolites,µmol/L
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