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Abstract 

 

The area of Bioinformatics and sequence analysis has been rapidly expanding in the 

last few years with lots of new projects and bright ideas that try to model and 

understand DNA sequences in an effort to unlock their secrets. 

In a previous work, authors S.Vinga and J.Almeida developed a new tool for the 

extraction and classification of conserved motifs in DNA sequences. This work was 

based on Rényi entropy calculation and on a new fractal kernel function originated 

from the Chaos Game Representation map structure and applied to the Parzen window 

method to estimate point densities. The local information plots for each position in a 

genome sequence were called Entropic profiles. 

To demonstrate the results of this new method, a publicly available application was 

created. The tool was provided in two formats. One demanded the presence of a 

commercial mathematical software package and the other one was command line 

based and required the installation of large runtime files. However, the main problem 

of this tool is related to its efficiency. Both application formats were extremely slow 

and could take up to several hours or even days to process a regular, i.e., 4 Mbp, DNA 

sequence. 

By recurring to new structures, algorithms and improvements of the functions 

previously used, the current work proposed to create a new “Entropic Profiler” 

application from scratch. This new application is extremely fast, efficient and user 

friendly. This work resulted on a better platform to allow a wider audience to make 

use of the important findings in DNA analysis uncovered by the Entropic Profiles. 
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Introduction 

 

In the last decades, with the successive availability of whole genome sequences for 

many organisms, many research efforts have been made in the area of Molecular 

Biology to mathematically model the unveiled DNA sequences. This work is related 

to one of those efforts, the analysis of the composition of the genetic code sequences. 

In a recent work [1], the authors S. Vinga and J. S. Almeida, presented the concept of 

Entropic Profiles, a new method to extract and classify relevant and statistically 

significant segments of DNA sequence. 

The study of these specific segments, called motifs, is very important because their 

under or over-representation is very often associated with special biological 

significance. 

The Entropic Profile plots express the relative abundance of corresponding motifs for 

each position. Its calculation is based on previous work, the continuous Rényi 

quadratic entropy, and by using the Parzen window estimation method applied to the 

Chaos Game Representation/Universal Sequence Map of a sequence. 

For each position in the sequence, the Entropic Profile function retrieves information 

about the L-tuple suffixes directly from the density kernel function, which allows the 

extraction of scale independent motifs. 

Along with this new method, the authors supplied a computational application 

developed in Matlab m-code to demonstrate their approach. However, the Matlab 

software package is not freely available and in this sense it is not a resource available 

to everyone. The alternative was to get the publicly available binary files. But also 

these command-line based executables required the installation of the Matlab runtime 

files, which although being freely available, imply the heavy download of the installer 

package, which is not very convenient at all. On top of that, not everyone is familiar 

with the Matlab programming language or with command-line based tools. So, all 

these restrictions limited the usability of this application. 

However, even when one overcame all these requirements, this is when the real 

negative point of the application arises. Due to the objective of rapidly creating a 

simply working application, not much attention was given to the improvement of the 
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internal algorithms, and so, the analysis of a normal, i.e., 4Mbp, sequence can take up 

several minutes. Larger sequences can take hours or even days, rendering it to a not so 

practical usage. 

Having this in mind, the authors have proposed several ways to speed up the internal 

calculations, namely by the use of suffix tree structures to deal with larger sequences. 

By using those and other new algorithms and data structures, the current work 

proposes to put in practise those ideas and to make the already publicly available 

algorithm faster, more efficient and more user-friendly, and thus, more practical and 

more widely available to everyone. 

 

 



 6 

Related Work 
 

Since this work was developed in the context of the Computational Biology area, we 

will first present as a background some useful basic molecular cell biology notions. 

This will provide some general biological motivation on sequence analysis. 

The algorithms used in this project are based on the work mainly developed in [1] and 

[2]. So, next we also present some of the basic concepts and formulas introduced or 

studied on those previous reports. 

 

Molecular Biology Concepts 

 

This current work is inserted in the field of biological sequence analysis which is the 

core of Bioinformatics and Computational Biology. This area of study involves the 

use of knowledge and techniques from a set of different areas such as Applied 

Mathematics, Statistics, Informatics, Chemistry and Biology, to model and to solve 

open problems in Molecular Biology. Due to the increasing number of genome 

sequencing projects which provide new biological data to process, much research is 

being developed in this field and new break-through discoveries appear every day. 

The molecules of the biological sequences, such as DNA, RNA and proteins, have a 

fundamental role in cell biology because they define almost all of the cell’s activities. 

And the key to understand these processes relies on comprehending how these 

sequences interact with each other and with their surrounding environment. 

Deoxyribonucleic acid (DNA) is the basic information macromolecule of the cell and 

is constituted by two chains of nucleotides. Each nucleotide is composed by 

deoxyribose, a pentose or five-carbon sugar molecule, linked to a phosphate group 

and to a nitrogen organic base of one of the four types: adenine (A), cytosine (C), 

guanine (G) and thymine (T). DNA sequences are often represented using this four-

symbol alphabet that transcribes the coding strand starting from the 5’ end to the 3’ 

end, according to the type of the free carbon in the terminal sugar. 

Ribonucleic acid (RNA) is constituted by a single strand of nucleotides with a similar 

composition, but with ribose as the constituent sugar and the uracil (U) base instead 
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of the thymine. Different types of RNA are involved in distinct cell processes, namely 

messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA). 

 

 
Figure 1 - DNA and RNA chemical structure. 

(In”Expanding the Toolbox for Proteomic Research” article series by Dr. R.K. Boyd) 
 
 

Nucleotides in each DNA chain between the sugar of one nucleotide and the 

phosphate group of the adjacent nucleotide. When two DNA strands establish 

hydrogen bonds between their bases, with standard pairing A-T and C-G, a stable 

three-dimensional structure is formed, the classic double-helix. 
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Figure 2 - DNA double helix.  

(From “DNA” article at “Wikipedia”, by R. Wheeler) 

 

 

A linear double-stranded DNA molecule and the associated proteins constitute a 

chromosome. The total DNA in the chromosomes of an organism is known as its 

genome. The majority of DNA, 98%, has unknown function and is naively called 

“junk-DNA“, and the other part is constituted by genes. They are units of hereditary 

information that specify the synthesis of proteins and are organized in exons and 

introns. 

Proteins are macromolecules made of three-dimensional chains of amino acids. There 

are 20 different amino acids. Proteins are encoded by genes and are responsible for 

most of the cell biological activities. Enzymes are a particular type of proteins and act 

as a catalyser for all biochemical reactions. 

The information flows from DNA to RNA and then from RNA to proteins. All the 

genetic information stored in genes is duplicated when cell division occurs. This 

process is called DNA replication. 

The protein synthesis is also very important because this is when all the information 

encoded in DNA is expressed and will start influencing the cell structure and 

metabolism. This process is mediated by enzymes and involves different types of 

RNA in its several steps. 
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In a general overview, first the information in the DNA is used as a template to 

perform the transcription to a complementary strand of precursor-mRNA. Next the 

introns are discarded and exons are kept and linked, originating the mRNA. Then the 

information in the mRNA is decoded into proteins:  the mRNA attaches itself to a 

ribosome, constituted by rRNA and proteins, starting the translation process. Each 

sequence of three nucleotides is called a codon and encodes one specific amino acid. 

The tRNA then performs the connection between bases and amino acids. Each tRNA 

has a sequence of three bases called anti-codon that pairs with the complementary 

codon in the mRNA. It also carries a specific amino acid. The tRNA molecules 

successively bind to the complementary mRNA, and bonds are created between the 

sequential amino acids, forming a growing chain. This process begins with a start 

codon and stops when an end codon is found by the ribosome. This is when the 

mRNA is released, along with the newly synthesized protein. 

 

 
Figure 3 - The Central Dogma of Molecular Biology: transcription and translation. 

(In “The Basics of Molecular Biology explained” in “The Science Creative Quarterly” of August 

2003, by J. Wang) 

 

 

Motifs are specific conserved segments in the DNA sequence that may have some 

biological meaning: their under or over-representation is often related to special 

biological functions. This is why motif detection and classification is very important. 

Searching for similar sequences inside a database or the comparison and classification 

of sequences are very important tasks. This is why the sequence analysis field has a 

vital role in Bioinformatics and Computational Biology. Biological sequences are 
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usually represented by sequences of symbols from the corresponding alphabets 

mentioned above, i.e., the 4 bases for DNA and the 20 amino acids for proteins. And 

all these processes rely on algorithms on strings to process and investigate the 

sequences. 

 

Methods 

 

Chaos Game Representation / Universal Sequence Maps 

The Chaos Game Representation (CGR) allows the mapping of a DNA sequence into 

a continuous coordinate space [3]. It is a technique based on iterated function systems 

with several important properties explored elsewhere [4]. This representation allows 

to perform a scale-independent sequence analysis without having to predefine a fixed 

memory length in advance, thus generalizing Markov Chain models 

While the CGR maps are only defined over the 4 letter alphabet of a DNA sequence, 

Universal Sequence Maps (USM) correspond to a generalization of the previous 

methodology to sequences with an arbitrary alphabet size, for example proteins or 

natural languages texts [5]. 

In CGR maps each corner of a unit square [0,1]x[0,1] is assigned to one of the four 

possible nucleotides. The position xi є 
2 of the CGR map of a sequence S=s1s2…sN , 

where si є {A,C,G,T}, for i=1…N , is given by: 
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Geometrically, the construction of the iterative CGR map consists on starting at the 

centre of the square on (0.5,0.5) and then, for each symbol of the sequence, moving 

the pointer half the distance from the previous position towards the corner of the 

square corresponding to the current symbol. The following figure describes the 

construction of the CGR map for the first 10 nucleotides of a sequence, where each 

point corresponds to one symbol in the original sequence: 
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Figure 4 - CGR of the first 10 nucleotides of E.coli gene thrA: ATGCGAGTGT. 

(Figure obtained from [6]) 

 

 

In a reverse method, the nucleotide sequence can also be recovered from the CGR 

position by successively dividing the current square in 4 identical smaller squares the 

number of times according to the number of bases we want to be resolved. It is 

possible to recover all the sequence up to that point by reversing the procedure 

described in (1). 

 

 
Figure 5 - Resolution of the 8th CGR coordinate in order to univocally recover the DNA sequence. 

(Figure obtained from [6]) 
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This way, the number of retrieved bases is defined as a function of the resolution of 

the CGR position, giving this kind of maps their fractal properties. 

Another interesting property is that CGR groups together the same suffixes, i.e., even 

if one specific substring or motif are far apart in the original sequence it will be 

mapped in the same CGR sub quadrant. 

By calculating the positions for the entire sequence, and then dividing the square 

according to the desired resolution and colouring each smaller square according to the 

number of points inside it, the final CGR density map can be obtained. (CGR 

originally is constituted only by the individual points) 

 

 
Figure 6 - CGR coordinates of the full thrA gene sequence, totalling 2463 pairs of bases, and 

plotted with the relative frequencies for each 8 × 8 quadrant represented as a greyscale. 
(Figure obtained from [6]) 

 

 

Parzen window method 

The Parzen window method, or kernel density estimation, is a statistical method of 

estimating the Probability Density Function (PDF) of a random variable from a 

sample [8]. 

This method is based on first choosing a weighting function or kernel K(x) and a 

specific window width h. Then the kernel density approximation of the PDF of a 

random vector x is a linear combination of the kernels centred in the observed sample 

points a1,…,aN , and is calculated by: 
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Usually a simple Gaussian function is used as the kernel function, but the work 

developed on [1] proposed a new fractal kernel function that is defined in unit 

hypercubes, which is much more adjusted to the geometry of the CGR domain. This is 

exemplified below on Figure 7, where a 2D representation of this kernel is shown. 

 

Rényi entropy 

The Rényi Entropy is a family of functions that quantify the diversity, uncertainty or 

randomness of a system, which in the present case is a sequence of DNA nucleotide 

bases [9]. It is a generalization of Shannon’s Entropy measure. 

The Rényi Entropy of order α ≥ 0, α ≠ 1 of a continuous probability density function 

f(x) is given by: 

∫−
= dxxfH α

α
α

)(ln
1

1
        (3) 

The estimation of DNA global entropy was addressed recently [2]. This work was 

focused on α=2, Rényi’s quadratic entropy, because this leads to important 

computational simplifications obtained for Gaussian kernels. The expression used in 

that report (before the simplifications) is defined by: 

∫−= dxxfH 2
2 )(ln         (4) 

where f(x) is the continuous density of points of the given coordinate in the 

CGR/USM maps. This calculation of the Rényi entropy of a CGR map allowed 

measuring the randomness of the original represented sequence. One synthetic DNA 

sequence generated from a Markov Chain model of zero order and 

p(A)=p(T)=p(C)=p(G)=0.25 achieves the highest entropy, whereas a sequence 

constituted by only one symbol has the lowest entropy.  

 

Entropic profiles 

The report in [2] introduced the main concepts, but it was based on a global approach, 

i.e., it considered the entropy of the whole sequence and did not allow the exploration 

of local patterns. The later research reported in [1] then proposed a local entropy 

formulation instead, based on local information per symbol/position. 

It introduced a new fractal based kernel with two parameters (L and ø) instead of 

Gaussian functions, which was much more adequate to the geometry of the iterative 

CGR maps, namely concerning its domain [1,7].  
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This kernel is constructed by considering a linear combination of the characteristic 

functions Ik,xj(x) of squared blocks Ak,xj in 2 that depend on a 2D point xj and on a 

chosen resolution k. These blocks are similar to those present in the CGR maps. 

The resulting normalized kernel is then obtained by: 
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where ø is the constant ration between two consecutive volumes of Ak and Ak-1. 

The underlying idea is to weight, by powers of 4ø, each step function Ik,xj(x) which 

corresponds to a sort of generalized Markov model. All the details on the construction 

of this kernel can be obtained in [1]. 

 

 
Figure 7 - Fractal kernel construction projected to one-dimension, for L=2 and arbitrary ø. 

(Figure obtained from [1]) 

 

By applying the Parzen window estimation method to this new kernel and after 

performing further clever simplifications, the final equation is reached: 
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where L is the resolution chosen, ø is a smoothing parameter, and c([i-k+1,i]) is the 

number of motifs (si-k+1…si) in the whole sequence of length N, i.e., the number of 

occurrences of the substring of length k that ends at position i in the sequence. 
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Intuitively, this value corresponds to the height of the function when all the CGR 

points are considered. 

This function retrieves, for each position in the sequence, the information about L-

tuple suffixes directly from the density kernel function estimate. It can be interpreted 

as a linear combination of suffixes counts up to a given memory length L, with 

increasing and decreasing weights (values of ø). 

This is the formula that is the core of the application developed and is going to be 

subject of many modifications and improvements. 

 

Normalization 

As a last step, the normalized values must be calculated by the expression: 
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This corresponds to extracting the local density and can be interpreted as the number 

of standard deviations from the mean in each coordinate, allowing to compare 

different parameters combinations 

For example, if a particular motif appears in the sequence more often than what would 

be expected by chance, then the density estimation for that particular position will be 

higher than the average mL,ø. These values are strongly associated with the degree of 

repetition in the sequence of the given suffix at that position. 

This is the expression effectively used to calculate the Entropic Profiles, so we define 

)(xĝ  (i)EP iøL,øL, = . 

This formula will also be subject of some optimizations explained further ahead that 

will contribute to accelerate the developed application. (See also section 3.2 – 

Algorithms.) 
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Statistical significance of motifs 

 

In order to allow the comparison of the entropic profiles values with other previous 

relevant statistical efforts, the p-values and z-scores of the analyzed motifs are also 

reported. Over-represented motifs have a very low p-value, very closer to zero, and 

very high z-scores and EP values. Common motifs that occur an average or expected 

number of times, present a high p-value and low z-score and EP value. 

These values are calculated using first-order Markov chain transition probability 

tables estimated directly from the whole sequence. The results take into account the 

overlap capacity or period of each motif [10,11]. 

The number of (possibly overlapping) occurrences of a word W of length m in a 

sequence S of length n (over an alphabet A), is given by: 
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Let’s consider a first order homogeneous Markov chain with transition matrix 

[π(a,b)]a,bЄA and stationary distribution [µ(a)]aЄA. Over this model, called model M1, 

the probability that an occurrence of word W=w1…wm (wi є A) starts at a given 

position in the sequence is given by: 
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Now we can define the estimator of the average number of occurrences of W by: 
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Another useful notion is the definition of the period of a word W. It corresponds to the 

possible lag between two overlapping occurrences of W, and is represented by a value 

p Є {1,…,m-1} such that wi=wi+p for every i from 1 to m-p. We also define ρ(W) as the 

set of all periods of W. 

This allows us to express the estimator of the number of occurrences of W as: 










 +−
+−

+
×+

++=

∑∑

∑

∈∈

∈

)(

)(21

)(

)(

)(

)(
)(ˆ

)......(ˆ2)(ˆ)(ˆ

1

1

,

22
2

)(
11

wN

wN

abN

abN

aN

aN
WE

wwwwEWEWV

W

Aba

W

Aa

W

Wp

mp

ρ

  (13) 



 17 

where NW(a) denotes the number of occurrences of a inside W and NW(a+) stands for 

ΣbЄA NW(ab). 

 

Normal distribution 

The Normal/Gaussian distribution was used as an approximation for the distribution 

of N(W). The computational implementation of its cumulative distribution function 

most commonly used is the one present in [15]. It has a precision up to 10-7. 

 

Z-Scores 

The z-score is another tool to measure the relative rank order of the motifs. The 

expression used to calculate the z-score of a motif M is: 

)(ˆ

)(ˆ)(
)(

MV

MEMN
Mzscore obs −

=        (14) 

 

P-Values 

The p-value of a motif M is the probability of observing more counts of M than those 

expected under the given model. In other words, it corresponds to the probability that 

the number of counts observed could have occurred by chance. 

( ))()()( MNMNPMpvalue obs≥=       (15) 

When motifs have a p-value lower than 10-3, it means they occur in exceptionally high 

number when considering the Markov chain model, and so, we’re in the presence of 

over-represented motifs. 
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Entropic Profiler 

 

The Entropic Profiler is the main application of this report whose goal is to replace the 

previous publicly available Matlab based application. The objective is to calculate 

entropic profiles but attending to speed and efficiency to allow the processing of 

whole genomes. Although it relies on the same basic formulas as its ancestor, it does 

not reuse or restructure the Matlab code, but it is based instead on entirely new code 

written from scratch. 

All the structures and algorithms used here were written in the C programming 

language. The result is a multi parameter and multi output command line tool. But this 

sort of application would scare off some of its potential users. So, a web based 

interface was also developed. It performs the bridge between the user and the core 

command line application. The PHP programming language allows processing the 

input from the web page to the core application and then processing and reorganizing 

the output to be presented on the web page in a more elegant form. 

The input web page allows the user to introduce a DNA sequence in the FASTA 

format from one of two distinct ways: typing or pasting the sequence text or 

uploading a file that contains the sequence. The application automatically removes 

invalid characters from the processed sequences. 

It then allows to change or to set the calculation parameters, such as the values for the 

L and ø arguments described before as well as the section of the sequence to study. 

For efficiency purposes and for other reasons explained more ahead, both the L and ø 

parameters are limited to a maximum value of 10. 

It is possible to run the study based on a particular position or based on a specific 

motif.  

It also allows the user to load a previous work. This is done by saving the uploaded 

sequence on the server side as well as the built suffix tree and some other values. This 

allows to drastically reducing the loading and calculations times when returning to a 

previous work, by reusing the saved results and thus preventing the recalculation of 

the values already obtained before. 

Some sample sequences and example parameters are also provided and ready to be 

used by everyone who just wants to simply test or do a fast experiment on the entropic 

profiles. 
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Next we will give an overview of the major data structures and algorithms behind the 

Entropic Profiler, as well as a detailed explanation of all the components of its 

interface. 

Data Structures 

 

Suffix trees 

Suffix trees are efficient structures to represent and store sequences of symbols and to 

allow fast access to words inside the sequence and their suffixes [12]. 

The usage of this structure on this project is somehow natural because the major 

computational challenge in the core entropic profile function is entirely centred on 

calculations and operations over suffixes. For each position i and a given length L, we 

need to obtain, for expression in (6), the counts for all substrings of lengths ranging 

from 1 to L that end at position i, i.e., it has to retrieve the counts of all suffixes of the 

string si-L+1…si. 

But to increase its efficiency, some internal modifications have to be made to the 

commonly used suffix tree structure, as we will explain later on this chapter. 

 

Suffix Links 

Suffix links are a practical way to walk inside of a suffix tree. As the name indicates, 

they connect decreasing length suffixes of a word inside the tree. For example, a node 

whose path spells “ACGT” is connected through a suffix link to the node whose path 

spells “CGT”, which in its turn is connected to “GT”, then “T”, and then to the tree 

root node. Figure 8 presents an illustrative scheme for the sequence “ACGT”. 

 
Figure 8 - Suffix tree for the word "ACGT" with corresponding suffix links. 
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As it is possible to see, all the suffixes of the word (“ACGT”, “CGT”, “GT”, “T”) are 

present in the tree and can be accessed directly from the root node. This organization 

allows searching for any substring of the word starting at the root and following 

matches down the tree. This way a word of length m can be found in m steps (or less, 

in case of a premature mismatch). 

 

Branches 

General usage suffix trees allow an arbitrary number of sub-nodes branching from 

each node proportional to the alphabet size. But in this work we deal with the specific 

case of 4 symbol sequences. 

Having this in mind, each tree node is created and initialized with 4 empty branches, 

one for each possible future new branch. 

 
Figure 9 - Node with one branch labeled by 'A' and another branch labeled by 'G'. 

 

This structure greatly speeds up node lookups because for example the pointer to a 

branch with label ‘A’ is always stored on the first position of the branch list. If that 

pointer is null, then no branch labelled by ‘A’ exists. This also prevents having to 

check for and allocate new pointer positions when adding new branches, which is a 

very common operation because the trees that will be created are very “dense” in a 

branching point of view. 

 

Limited Depth 

The creation of a depth limit on the suffix tree stops the tree from growing without 

bounds, reducing memory consumption as well as calculation time. 

In the area of sequence analysis, it is seen that studies of motifs longer than 10 

nucleotides are extremely rare, and most approaches in sequence modelling use 
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Markov orders below 8. Because of these facts, our suffix tree structure is limited to 

10 symbols of depth, which greatly reduces the calculation time. 

 

Node counts 

The adopted suffix tree implementation recurs not just to suffix links, but to a new 

field present in every node that store the number of counts of that particular suffix. 

This allows us to know the exact number of occurrences of a particular suffix inside 

the whole sequence just by a simple word matching operation over the suffix tree. 

These counts are updated progressively during the building of the tree. 

Figure 10 presents an example showing both suffix counts and limited depth. 

 
Figure 10 – Suffix tree for word “ATTACAC” showing the suffix counts and limited to depth 3. 

All substrings of length 3 are represented in the tree (“ATT”, “TTA”, “TAC”, “ACA”, “CAC”). 

 

Side Links 

All nodes at the same depth are connected through a sort of “side links” which will be 

very useful to speed up some calculations as we will see further ahead (Figure 11). 

 
Figure 11 – Side links of a sample tree connecting nodes of the same depth. 

 

The words with the same length on the tree are progressively connected to the 

previous word as they are created in the tree building phase. 
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Construction Algorithm 

The tree building algorithm used in this work is similar to the first one described in 

[13], with the addition of node counts, side links, limited depth and the detail 

described before concerning the branch creation. The basic concept behind the 

construction of the suffix tree for a word w1…wn is to recursively build the suffix trees 

for words w1 , w1w2 , … , w1…wn-1 , w1…wn. A more detailed explanation of the 

algorithm can be found in [13]. 

Figure 12 shows a step by step example of the construction of the suffix tree for the 

word “ACAT”. 

 
Figure 12 – Construction of the suffix tree for the word “ACAT” with depth limited to 3 symbols. 
Followed links and nodes are marked in green and newly created links and nodes are marked in 

blue. 

 
The speed of the construction algorithm could be slightly improved by using both the 

compacted edges and the open edges tricks and this way allowing the use of 

Ukkonen’s faster suffix tree construction algorithm [13]. But we decided to use a 

limited depth tree, since the type of sequences that will be used in this project are 

extremely large, producing very “dense” trees. Therefore, the new edge structures 

required for the Ukkonen’s algorithm would slow down all the remaining operations 

over the tree that correspond to the largest part of the application.  

 

Saved Tree Format 

There are some occasions when our tool needs to save or load already built trees of 

the studied sequences. To prevent having to rebuild the entire suffix tree, which is a 

very heavy computation for longer sequences, thus saving precious computational 

time, a saved tree format was created. 

 

     …  0 0 0 0 

# branches label count ending zeros 

Table 1 – Binary representation of a node in the saved tree format. 
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Since each node can have a total of 4 child nodes, so we will need 2 bits for the 

number of branches. Also, 2 more bits are needed for the label of the node which 

corresponds to one of the nucleotides A, C, G or T. Then we store the integer count of 

the node in base 2, which can take an arbitrary number of bits. At last we add 4 

ending zeros to separate this node from the next node. 

Because the base 2 representation of the count of the node might also have 4 

consecutive zeros, a bit stuffing technique is used: an ending “1” is added every time 

3 consecutive zeros appear. This prevents wrong end node markers from appearing 

incorrectly inside the count field. The extra “1” is later removed from the field in the 

tree loading operation. 

 

FASTA Format 

The FASTA format is a generally and almost universally used text-based file format 

to store and represent DNA nucleic acid sequences or protein amino acid sequences. It 

also allows storing the sequence name and comments. No standard file extension 

exists for this format, but commonly used extensions are .fa, .fas, .fsa or .fasta.  

This format consists on a first header line starting with the “>” symbol and containing 

the sequence description, and the following lines containing the sequence itself. The 

following text lines present an example of a FASTA file: 

 

>sequence1 This is the description for the sequence 

ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACG 

TACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTAC 

GTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTA 

 

Besides the basic “A”, “C”, “G” and “T” letters, other special code letters are used to 

represent gaps or several possible nucleic acids in the sequence. For instance, “R” 

stands for “G” or “A” and “B” stands for “G” or “T” or “C”, just to name 2 examples. 

In the scope of the current project, only DNA sequences represented by the 4 standard 

letters are allowed. Each FASTA file can also store multiple sequences, but in the 

current work only single sequence files are used and allowed. 

As a generalized standard, all available sequenced genomes can be found in this 

format. Therefore the use of this format in the developed application provides a solid 

base for loading all kinds of sequences. 
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Algorithms 

 
In order to improve efficiency and speed of the algorithm that computes the Entropic 

Profile values, some of the formulas were restructured and some simplifications were 

made. Since the entropic profile study can be performed based on a particular 

sequence position or based on a specific motif, an important algorithm worth mention 

used in this project was the very fast bit wise string match algorithm “Shift-And”. 

 

Entropic profile computation 

 

Simplifications 

The basic formula behind all calculations of the Entropic Profile values is formula (6). 

The first simplification we made to this formula was to apply the expression of the 

sum of all terms of a geometric progression to the denominator of (6):  
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For the reasons already presented before to explain the limited depth of the suffix 

trees, the maximum length of the motifs is limited to L=10. Values higher than that 

are not considered because they are rarely used in practise. 

Another simplification applied is related to tests performed on the previous report [1]. 

These tests showed that for variable values of ø, the highest scores of the entropic 

profile function were usually obtained for ø=10, so this value is always used when 

searching for a maximizing value of L or when performing a study by motif. 

 

Speeding up normalization 

After the suffix tree is built, the next heavy computation stands in the calculation of 

the values required for normalization. When normalizing the entropic profiles 

function with (7), for each L considered, we have to calculate the mean and standard 

deviation with formulas (8) and (9). This requires to go through the whole sequence 

and to calculate the entropic profile value of all positions. And this is done for each 

different L, and one time for the mean and another time for the standard deviation. As 

we can guess, this is a very computationally expensive process. Next we present some 

ways that can be used to speed up these computations. 
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Mean value 

For the calculation of the mean and by expanding formula (8) with (6), and by 

applying the simplification (16) we get: 
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This formula can be re-factored and simplified to: 
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Now, considering only the underlined section of formula (18) and applying some 

basic summation properties, formula (19) is obtained. 
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By paying attention to the underlined part and taking a closer look at what is going on 

for each k, see formula (20). For better visualization, from now on we will use the 

notation c[i]≡c([i,i]) , c[i-1,i]≡c([i-1,i])) , c[i-2,i-1,i]≡c([i-2,i])) , … and so on, and 

notation c(“X”) to express the counts of a specific word. 
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Take for example the case of k=2. What we are doing here is to go through all the 

positions of the sequence and sum the counts of the pairs of symbols. For example for 

pair “AA”, each time we encounter this pair in the sequence, we add the value of 

c(“AA”) to the result. And we are going to find this pair c(“AA”) times, because of 

the definition of c() (number of occurrences of the string in the sequence), so we sum 

c(“AA”), c(“AA”) times. Therefore, the underlined section on the expressions above 

corresponds to adding the squared counts of all distinct pairs of symbols existent in 
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the sequence. To help represent this, we define C2
[k] as the sum of the squared counts 

of all distinct words of size k in the sequence. 

Well, we already have an easy way to calculate this value. This is where the side links 

come in. The side links allow us to traverse the suffix tree horizontally and cover the 

counts of all words of the same length in a single sweep without having to go back to 

the root of the tree each time we need another word. 

Now by combining (18) and (19) with this new knowledge, we can get the final 

shorter and lighter formula for the mean calculation. 
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Standard deviation 

Now for the standard deviation expression things are a little bit more complicated, but 

possible. 

By expanding the squared expression inside (9), the following formula is obtained: 

( )∑
=

+××−
−

=
N

i

LiLLiLL mxfmxf
N

s
1

2
,,,

2
,, )(ˆ2)(ˆ

1

1
φφφφφ     (22) 

The underlined section can be further simplified. 
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By modifying (8) we can get: 
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And by applying the two above expressions: 
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The mean value mL,ø was already calculated. The tough part is the underlined sum of 

squares for the entropic profile values of all positions. Because this is a squared value 

and is not linear, we cannot apply the same simplifications like we did on the mean 

simplification. So we have to go a little deeper. 

By continuing to applying the sum, the square and some simplifications to (25): 



 27 

∑ ∑

∑
∑

= =
+

=
+

=









+−⋅+⋅










−

−
=

=



















−

−

+−⋅+

N

i

L

k

k

L

N

i
L

L

k

k

ikic
N

ikic
N

1

2

1
21

2

1
1

1

]),1([)4(
1

1

1

1

1

1

1

]),1([)4(
1

1

φ

φ

φ

φ

φ

φ

    (26) 

Formula (27) shows what happens to the underlined part for increasing values of L, in 

formula (26). 
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For the first sum we can use the previous trick of the squared counts again. But the 

second sum is slightly different. In this case, each time a symbol appears in the 

sequence, we add c[i]
2 to the result. And each symbol appears c[i] times in the 

sequence, so we only need to add c[i]
3 for every distinct symbol. So, it is practical to 

define C3
[k] in a similar way as before. 

Let Mk(X) be the set of all distinct motifs of length k that appear in the sequence X. 

This way, C2
[k]  and C3

[k] get defined by: 
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Now that we have a proper notation, let’s continue to experiment with different values 

of L. 

]2[
)4(

],1[
)4(

][
)4(

12][
)4(

1

],1[
)4(

],1[
)4(

][
)4(

12][
)4(

1

],1[
)4(

][
)4(

1:2

]1[
)4(

]1[
)4(

2][
)4(

1:1

3

22

1

2

1

2

1

2

2222

1

22

3

21
2

1

1

2

C
N

iic
N

ic
N

ic
N

iic
N

iic
N

ic
N

ic
N

iic
N

ic
N

L

C
N

C
N

ic
N

L

N

i

N

i

N

i

N

i

N

i

⋅







+

















−⋅








+⋅+








+=

=













−⋅








+







−⋅








+⋅+








+=

=







−+








+=









++Ν=








+=

∑∑

∑

∑

∑

==

=

=

=

φφφφ

φφφφ

φφ

φφφ

 



 28 

]3[
)4(

],1,2[
)4(

],1[
)4(

][
)4(

12

],1[
)4(

][
)4(

1

],1[
)4(

][
)4(

1:3

3

23

1

32

1

22

1

2
2

C
N

iiic
N

iic
N

ic
N

iic
N

ic
N

iic
N

ic
N

L

N

i

N

i

N

i

⋅







+

















−−⋅








−++⋅+

+







−++=

==

















−++=

∑

∑

∑

=

=

=

φφφφ

φφ

φφ
K

(29) 

As we can see, a pattern is starting to appear. The first sum can be calculated from the 

previous value of L and the last part we already have a formula for it. By focusing on 

the underlined middle sum that represents the difficult part. 

We cannot use the C2
[k] trick here. This part involves a product of counts, but they 

are not counts of independent words. It is the product of counts of all the suffixes of 

the same word. To better understand what is going on here, see the following 

example. Consider L=4 and the motif “ACGT”. The value we have to calculate here is 

similar to: 

( ) )"(")"(")"(")"("1 ACGTcCGTcGTcTc ×+++  

So, as we can see, all the words of the counts considered are connected. And we have 

to perform this calculation for every distinct word of length L present in the sequence. 

But once again, our suffix tree structure comes to the rescue. All these values can be 

efficiently retrieved in one row from the tree: to get the counts of all the words of the 

same length, we traverse the suffix tree horizontally with the help of the side links, 

and to get the remaining necessary counts for the suffixes of the word, we only need 

to follow the suffix links until we reach the root of the tree. Then we proceed to the 

next word, and so on. So, this can be done very easily. 

Expressions (27), (28) and (29) can therefore be redefined to be calculated recursively 

in the following manner: 
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And considering all the previous results, the simplified formula for the standard 

deviation calculation is finally defined by: 
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After the normalization values for all L’s are calculated, the application saves them to 

a file to prevent their recalculation next time the user decides to work with the same 

sequence. 

 

The main underlying improvement in all these simplifications is that we can scan 

through all the motifs of a particular length inside the suffix tree instead of scanning 

through all the positions inside the whole sequence. The number of distinct motifs of 

length L is definitely much smaller than the size of the sequence. 

 

Shift-And Algorithm 

Because DNA sequences can be extremely large, the search for a particular motif 

inside the whole sequence has to be a very fast and efficient process. Having this in 

mind, the very fast exact string matching algorithm “Shift-And” explained in [14] was 

used for this purpose. Its great speed comes from the fact that all the operations 

required are implemented using basic arithmetic bit wise operations. Here we present 

a brief description of the main algorithm. 

Let T=t1…tn be the text of size n and let P=p1…pm be the pattern of size m we want to 

match. We then consider a bit array R of the same size as the pattern, and Rj the value 

of that array after the j-th character of the text has been processed. This array stores 

information about all the matches of prefixes of P that end at the position j of T. More 

specifically, Rj[i]=1 if the first i characters of the pattern match exactly the last i 

characters up to j of the text, i.e., p1 p2 … pi = tj-i+1 tj-i+2 … tj . 

When processing tj+1, we need to verify if any of the previous matches is extended, 

i.e., for each i such that Rj[i]=1, we need to check if pi+1=tj+1. If Rj[i]=0, then there is 

a match up to i, so there cannot be a match up to i+1. If tj+1=p1 then Rj+1[1]=1. If 

Rj+1[m]=1, that means that there is a complete match of the pattern.  
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R0 is initialized as follows: 
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If Rj+1[m]=1, there’s a match starting at position j-m+2. 

This transition is performed once for every character of the text but can be computed 

very fast in practice.  Let Σ={s1,s2,…,s|Σ|} be the alphabet of the text. For each 

character si of the alphabet, we build a bit array Si of size m such that Si[k]=1 if pk=si, 

i.e., each Si marks the positions in the pattern where si appears. Now, to calculate the 

transition from Rj to Rj+1, we only need to perform a Right Shift of Rj and an And 

operation with Si, where si=tj+1. This way, the transition can be implemented by only 

two simple arithmetic operations, a Shift and an And: 

( )
ijj SRR ∧〉〉=+ 11  

A particular detail is that the Right Shift must fill the leftmost position with a 1, so we 

need an extra Or operation with a mask “10…0”. 

Table 1 shows a working example of the algorithm in action. 

 

text masks 
T  A T A T A C G A C A C G T  
Rj R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 

P Rj[i]            
 R[0]  1 1 1 1 1 1 1 1 1 1 

    

A R[1]  0 1 0 1 0 1 0 0 1 0 1 0 0 0 
T R[2]  0 0 1 0 1 0 0 0 0 0 0 0 0 1 
A R[3]  0 0 0 1 0 1 0 0 0 0 1 0 0 0 
C R[4]  0 0 0 0 0 0 1 0 0 0 0 1 0 0 

pa
tt

er
n 

G R[5]  0 0 0 0 0 0 0 1 0 0 

 

0 0 1 0 
Table 2 – Steps of the Shift And algorithm applied to pattern “ATACG” (m=5) and to text 
“ATATACGAC” (n=9). There’s a match that ends at position 7 and starts at position 3. In this 
representation, the Right Shift corresponds to shifting down the column one line in the table. 
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User Interfaces 

 

The “Entropic Profiler” tool consists on a command line application written in C, but 

available through an easy to use web based interface written mainly in HTML and 

PHP. Some visual and usability improvements are also obtained by recurring to 

JavaScript and CSS. Next we present the main application’s input and output screens 

along with a description of all its features. 

 

Figure 13 presents the initial main page of the application’s web interface seen from a 

common web browser. Figure 14 briefly describes each of the commands and options 

available to the user. It’s through the web form in that page that the user can interact 

with the application. 

 

 
Figure 13 – Entropic Profiler´s interface viewed from a web browser. 
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Loading sequences 

To be able to get results in the Entropic Profiler, a DNA sequence is required. There 

are several ways to input a DNA sequence through the web interface: 

(a) a sequence can be typed symbol by symbol or copied and pasted from another 

text source directly to the text area 

(b) a file in the FASTA format containing the sequence can be selected and 

uploaded to the server 

(c) some predefined sample sequences (also present as examples in [1]) are 

already stored on the server and ready to be used 

(d) if the user has previously worked on a sequence and it is still stored on the 

server, an option to load the last saved sequence and parameters will also be 

available to easily continue the previous work 

These distinct ways of loading a sequence from the web interface are shown in Figure 

15. 

Input User contact and task 

Select study type Run application 

Reset form Set 

Figure 14 – Entropic Profiler’s main window. 
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Study by position 

After selecting a sequence, the user has the ability to choose to study the sequence by 

a particular position or by a motif of interest. After specifying the position to study 

and the parameters for the application and pressing the “Get Entropic Profiles” button, 

the results are presented in a new webpage. Figures 16 and 17 show the input and 

output screens for the position study as well as a description of all the parameters and 

output plots and values. 

(a) Type or copy/paste the text of the sequence 

(b) Upload a sequence stored in a FASTA file 

(d) Load the last project the user worked on 

(c) Load a pre-defined example sequence 

Figure 15 – Different ways to load a sequence. 
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Figure 16 – Studying a sequence by position. 

 
 
 

Figure 17 – The results of the study by position. 
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Study by motif 

If the user is interested on a specific motif inside the sequence, a search by motif can 

also be conducted. The user has the ability to input the motif string by introducing the 

symbols one by one using the available buttons. A specific section of the sequence 

can also be searched instead of the whole sequence. 

Figures 18 and 19 describe the parameters and the results of the motif study. 
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results 
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Go back to 
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Figure 18 – Performing a study by motif. 

Figure 19 – Results of the study by motif. 
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Results and Examples 

After choosing the sequence to be studied and the options for the analysis, the user 

can run the application. Some examples of the results obtained by the Entropic 

Profiler when analysing some sample DNA sequences are shown in Figure 20, n this 

case the whole genome of Escherichia coli (~4.6Mbp). 

 

Figure 20 – Study of position 35840 of E.coli with parameters L=8 and ø=10.  
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Another possibility is to study the sequence by motif. An example is provided below, 

where the analysis of motif “AAGTGCGGT” in Haemophilus influenzae is 

performed. 

 

 

 

Figure 21 – Study of motif “AAGTGCGGT” on H.influenzae. 

 
 
 
Next we provide a table where we show the running times for the sample sequences 

using our developed Entropic Profiler. 

 

Sample sequence Running time (seconds) 

Study by Position Study by Motif Name Size (bp) 
First upload Loaded First upload Loaded 

B. subtilis 2.000 0.4 0.4 0.1 0.1 

H. influenza 1.830.023 6.5 1.8 6.3 1.6 

E. coli 4.639.675 12.2 2.7 12.1 2.5 

Table 2 – Entropic Profiler running times (in seconds) for motif and position studies with first 
time uploaded sequences and using the loading option. The standard sample sequences and 

respective parameters were used. All the times presented consider both the calculations 

performed and the creation of the output (plots, images, tables, etc.). The tests were executed on a 

server machine with an Intel Pentium 4 CPU @ 1500Mhz and 512MB RAM. 
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We have choosen not to perform a comparison of running times with the previous 

Matlab application because many details would have to be considered to provide a fair 

basis of comparison. For example, the old application performs calculations over 5 

values of ø, ranging from 0.25 to 10, while the Entropic Profiler only considers ø=10. 

Still, the improvements over the previous application are clearly significant. Just as a 

simple example, the time to process the E.coli sequence was reduced from several 

days to mere seconds. The speed boost here is more than evident. The average 

processing speed is around 3 seconds per million of base pairs. Extremely fast and 

without any doubt much better than its predecessor . 
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Conclusions 

 

This work focused on the development of an efficient tool available through a web 

interface to compute the entropic profiles values for given DNA sequences. The 

prototype application previously available with the article that lead to this current 

work was created only with the sole purpose of performing preliminary testing and 

exemplifying some of the potential of the procedure. Although it performed 

flawlessly, the previous implementation did not have in mind the speed neither the 

efficiency of the process, even though there was a large room for optimizations as we 

saw on this report. 

Because the main expression used to calculate the entropic profiles is a function of 

suffix counts, the first main intuition is to use a suffix tree to represent the sequence. 

This was the major performance boost over the previous application. 

The observation that only suffixes with limited length were necessary, led to the 

development of an efficient limited depth suffix tree structure that stores the counts of 

each suffix. 

The major speed-up over the previous application is centred in the usage of this suffix 

tree structure to store the word counts. To retrieve the number of occurrences of each 

L-tuple word, the previous algorithm had to search through the whole sequence for 

each. The suffix tree allows the indexation of all the L-tuple words and all their 

corresponding suffixes for easy retrieval and stores all their counts, and all this by 

scanning through the sequence only once. This stands as a huge performance 

improvement over the previous effort. 

The improvements on the normalization of the core entropic profile function by 

recursively calculating the mean and the standard deviation of the whole sequence for 

successively increasing suffix lengths reusing the previous values also gave a huge 

contribute to improve speed. 

Thanks to the developed side-links structure, calculations that involved searching the 

whole sequence over and over again to retrieve the counts of words of a particular 

length are now replaced by a single horizontal scan of the suffix tree at the depth 

corresponding to that specific word length. 
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Some of the accomplished ideas, algorithms or structures developed for this particular 

work can also be reused and later readapted for building future efficient applications 

in similar sequence analysis projects. 

Looking over a different aspect, a program written in the Matlab programming 

language, m-code, although being built on top of C-code, is in a higher level language, 

and so, will always be slower than an application written in pure C, like the one 

created. 

The Entropic Profiler developed did not limit its functionality to the calculation of 

entropic profiles. It also outputs a much wider variety of useful and detailed results 

than its ancestor and in a more elegant way too. The ability to load the sequence from 

different sources and to restore the last work also improves greatly the usability of the 

application. Its structured web-based presentation gave it a more appealing look and 

its intuitive interface made its use extremely straightforward. 

Thus, we have achieved our objective of developing a fast and efficient tool, more 

easy to use and available to a wider public. The Entropic Profiles are one step closer 

to become a standard of sequence analysis tools in motif discovery. 
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